Cabling Sequences of Tunnels of Torus Knots
نویسندگان
چکیده
In previous work, we developed a theory of tunnels of tunnel number 1 knots in S. It yields a parameterization in which each tunnel is described uniquely by a finite sequence of rational parameters and a finite sequence of 0’s and 1’s, that together encode a procedure for constructing the knot and tunnel. In this paper we calculate these invariants for all tunnels of torus knots.
منابع مشابه
The Depth of a Knot Tunnel
The theory of tunnel number 1 knots detailed in [4] provides a non-negative integer invariant depth(τ ) for a knot tunnel τ . We give various results related to the depth invariant. Noting that it equals the minimal number of Goda-Scharlemann-Thompson “tunnel moves” [6] needed to construct the tunnel, we calculate the number of distinct minimal sequences of tunnel moves that can produce a given...
متن کاملThe Tree of Knot Tunnels
We present a new theory which describes the collection of all tunnels of tunnel number 1 knots in S (up to orientation-preserving equivalence in the sense of Heegaard splittings) using the disk complex of the genus-2 handlebody and associated structures. It shows that each knot tunnel is obtained from the tunnel of the trivial knot by a uniquely determined sequence of simple cabling constructio...
متن کامل00 8 Tunnel Leveling , Depth , and Bridge Numbers
We use the theory of tunnel number 1 knots introduced in [5] to strengthen the Tunnel Leveling Theorem of Goda, Scharlemann, and Thompson. This yields considerable information about bridge numbers of tunnel number 1 knots. In particular, we calculate the minimum bridge number of a knot as a function of the maximum depth invariant d of its tunnels. The growth of this value is on the order of (1 ...
متن کاملTunnel Leveling, Depth, and Bridge Numbers
We use the theory of tunnel number 1 knots introduced in an earlier paper to strengthen the Tunnel Leveling Theorem of Goda, Scharlemann, and Thompson. This yields considerable information about bridge numbers of tunnel number 1 knots. In particular, we calculate the minimum bridge number of a knot as a function of the maximum depth invariant d of its tunnels. The growth of this value is on the...
متن کاملStudying Uniform Thickness I: Legendrian Simple Iterated Torus Knots
We prove that the class of topological knot types that are both Legendrian simple and satisfy the uniform thickness property (UTP) is closed under cabling. An immediate application is that all iterated cabling knot types that begin with negative torus knots are Legendrian simple. We also examine, for arbitrary numbers of iterations, iterated cablings that begin with positive torus knots, and es...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008